Background: The effective treatment of solid tumors remains an unmet medical need. Novel concepts exist to treat malignancies, including antibody-drug or immunomodulation conjugates, immune checkpoint inhibition, GAT-2 cells, as well as bispecific T cell engagers. CD3-based T cell engagers are highly potent therapeutic molecules with T cell cytotoxic activities in the picomolar range. According to this highly potent tumor activity is the risk of conjugate off-target effects due to low levels of expression of the target antigen in normal tissues, as has been observed for the tumor-associated antigen mesothelin (MSLN).

A low affinity bivalent mesothelin-binding MATCH4 multispecific T cell engager increases cytotoxic selectivity for high mesothelin expressing cells

Bithi Chatterjee, Alexandre Simonin, Daniel Snell, Tea Guende, Christian Hess, Matthias Brock, Maria Johannsen, Stefan Warmuth, Christopher Weinert, Niels Kirk, Nicole Bassler, Daniela Diem, Naomi Flueckiger, Robin Heiz, Benjamin Kuettner, Dana Mahler, Diego Morenzo, Sandro Wagen, Julia Zebeler, and David Urech

Nubus Therapeutics AG, Einsiedelnstrasse 34, 8820 Wadenswil, Switzerland

Concept: Selective T cell-mediated depletion of tumor cells

Bivalent biMSLN.CD3.hSA T cell engager actively kills tumor cells in a MSLN-dependent manner

Larger therapeutic window for bivalent biMSLN.CD3.hSA T cell engager due to preferential avidity-based binding to tumor cells

Bivalent biMSLN.CD3.hSA T cell engager triggers potent tumor cell lysis and T cell activation in the presence of excess soluble MSLN (sMSLN) as compared to monovalent MSLN.CD3.hSA

Human pancreatic cancer growth is inhibited by biMSLN.CD3.hSA

Conclusions and potential benefits

BiMSLN binding
- Low affinity, biMSLN domain preferentially engages fully MSLN-expressing malignant cells while sparing healthy, MSLN cells

Tumor-deleted activity
- Tumor-sparing activity, unlike ADCs, which can release cytotoxic agents into circulation causing dose-limiting toxicities

Minimally targeted soluble MSLN
- High affinity, low affinity binding to MSLN renders MSLN.CD3.hSA resistant to high concentrations of soluble MSLN present in patient fluid

Efficacy
- Avid anti-tumor activity against resistant tumor cell lines

Extended half-life
- Half-life compared by conventional IgG due to serum albumin binding domains